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Abstract

Innovative sources of high-resolution mobility data are enabling new approaches to
modeling and measurement of human behavior. With the advent of global positioning
data in fisheries, now more than ever we can empirically model fishers’ decision-making.
In the short-run, after choosing the fishing gear, fishers decide where to fish, how much
to fish and when to return to the port on a given trip. Most of the research investigat-
ing these decisions has focused on one aspect of the decision at a time (e.g., choosing a
fishing location), treating other aspects exogenous. These decisions, however, are intercon-
nected and conditional on the underlying vessel capital stock (e.g., hold and fuel capacity).
This research constructs a novel spatial dynamic model of an individual fisher’s trip level
decision-making that incorporates simultaneous decisions on location choice, fishing effort
to allocate at each location, and travel route. It is motivated by the observations on
fishing trips from the Gulf of Mexico’s bottom longline fishery. Simulation results show
that technology constraints endogenously determine the trip length. These constraints
also impose a shadow price that affects the individual fisher’s choice of location and effort
from the outset of a trip. We compare these optimal spatial patterns with those from
a myopic fisher and a partially myopic fisher, where the former makes one choice ahead
decisions and for the latter we consider different levels of forward-looking choices (2, 3,
and 6 decisions ahead). The myopic fisher does not optimize route planning or consider
the technological constraints until it is time to return to port. Both factors result in large
reductions in trip profit even though, for example, catches can be the same across the
myopic and dynamic fisher. For the partially myopic fisher, the degree of route planning
and consideration of technological constraints depends on the level of forward-looking.
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Not surprisingly, the more forward looking the partially myopic the closer it approaches
the dynamic optimal. Building more refined models of trip level spatial decision-making
is important for the design and assessment of spatial and aspatial fishery management
instruments.

1 Introduction

The existence of high frequency space-time data on human activities and movements is per-

mitting the exploration and prediction of behavior in unprecedented ways. Cellphone data

has been used to understand the differential abilities of income groups to respond to COVID-

19 emergency declarations (Weill et al., 2020), to better predict traffic patterns (Wang et al.,

2013), and to understand global mobility patterns (Kraemer et al., 2020). Economists are

employing these data to measure/predict poverty and wealth (Blumenstock et al., 2015;

Steele et al., 2017), measure consumer preferences (Athey et al., 2018), spatial concentration

of urban economic activity and value of transportation infrastructure (Gupta et al., 2020;

Miyauchi et al., 2021; Kreindler and Miyauchi, 2021), social networks and social connections

(Björkegren, 2019; Athey et al., 2020; Büchel et al., 2020; Couture et al., 2021)

Satellite tracking data of vessels that report GPS coordinates throughout their voyage have

been used to map patterns of fishing effort across the globe (Kroodsma et al., 2018), assess

the effectiveness of the 200-nautical mile exclusive economic zone in limiting foreign vessels

intruding into a coastal nations waters (Englander, 2019), investigate the explore-exploit

tradeoff (OFarrell et al., 2019b), identify behavioral typologies of fishing vessels (OFarrell

et al., 2019a) and the behavioral changes post the introduction of catch shares (Watson et al.,

2018).

These data are also permitting researchers to revisit methodologies developed to explore
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space-time behavior to better understand their potential strengths and weaknesses. For exam-

ple, Dépalle et al. (2021) use vessel monitoring system (VMS) data matched with logbook data

on catches and effort to demonstrate potential biases in discrete choice random utility models

of fishing location choices due to spatial aggregation. Figure 1 contrasts the traditional data

used in modeling fishing choices with the vessel level tracking data that is available. While

the historical data had trip-level data on whether a vessel visited a site and catch, the VMS

data includes finer spatial information on the vessel’s path, site choice, and time spent in each

location.

Motivated by the existence of this data, we develop a more refined trip level model of

spatial-temporal decision-making of vessels. On any trip, skippers decide where to fish, how

to navigate to the sites, how much to fish, and when to return to the port conditional on

vessel capital, labor, target species, and gear. The decisions are influenced by economic

opportunities, technology (e.g., vessel hold and fuel capacity), and regulations (e.g., closed

areas and seasons, gear restrictions). Understanding trip level spatial decision-making can

inform the design of spatial and aspatial management measures (Bockstael and Opaluch,

1983).

On each trip, the short-run decision of location choice for commercial fishers is a dy-

namic spatial problem. Spatial patchiness of marine resources with different population levels

and economic characteristics generates discontinuities in the spatial structure (Sanchirico and

Wilen, 1999). Spatial decisions are therefore modelled as discrete choices among a finite

set of fishing sites in commercial fisheries. Since the original Bockstael and Opaluch (1983)

work, most of the studies use a static random utility model (RUM) to investigate trip-level

location choice under stock-induced uncertainty (see, e.g., Eales and Wilen (1986); Abbott
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and Wilen (2011)). For fisheries consisting of multiple day trips (e.g., tuna, groundfish),

researches have incorporated dynamic behavior into the static RUM with state dependence,

evolving information, and changing choice sets. While these advances capture some aspects of

the decision-making calculus, they are still simplifications of the full dynamic choice problem.

Mostly, as a means to maintain computational tractability, they fail to incorporate the in-

terconnections between location choice, trip duration, and vessel characteristics. The studies

that are more dynamic in fishers decision-making for multi-day trips1, however, often assume

an exogenous trip length for identification purpose (see, e.g., Hicks and Schnier (2006, 2008);

Hutniczak and Münch (2018)). A notable exception is a recent paper by Abe and Anderson

(2020) that models endogenous trip length resulting from freshness loss in a dynamic discrete

choice model. However, the study does not include trip-level location choice analysis.

This research constructs a dynamic spatial model of an individual fisher’s location choice

(extensive margin), cruise trajectory, and effort allocation at each site (intensive margin)

within a trip. The Gulf of Mexico’s reef-fish bottom longline fishery provides the motivation

and application of the method. A key feature of the model is the explicit incorporation

of route planning and trip-level production constraints on vessel hold capacity and/or fuel

consumption. These technology constraints introduce a shadow price into the decision-making

of where to fish, how much to fish, and when to return to port. Route planning consists of

finding the shortest path connecting the chosen locations. Both the shadow price and route

planning are missing in the previous discrete choice modeling of fisher trip decisions.

At the same time that high frequency data are becoming available, advances in com-

putational abilities and algorithms in operations research enable us to solve this complex
1Instead of maximizing current period utility in the static RUM, these studies consider the optimal trajectory

of forward-looking fishing decisions and maximize the sum of expected utility from the multi-period cruise.
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spatial-dynamic problem. The fishing trip decision-making is very similar to the orienteering

problem (OP), which is a routing problem with profits in the operation research literature

(Gunawan et al., 2016; Vansteenwegen and Gunawan, 2019). Solving the OP corresponds

to solving two well-known combinatorial optimization problems in an integrated way: the

knapsack problem (KP) and the traveling salesman problem (TSP). The individual fisher’s

location choice problem modifies the OP to account for the effort allocated at each location

and is formulated as a mixed integer quadratically constrained problem (MIQCP). It is solved

by the off-the-shelf solver Gurobi using a branch-and-bound algorithm.

To understand how optimal spatial effort allocation decisions differ from the approaches

often utilized in the literature, we also develop a myopic model where the individual fisher

chooses a location at each decision point within a trip and the effort to allocate at each site.

This stands in contrast to the dynamic optimal fisher that chooses a sequence of locations.

The myopic model mimics the assumption in the discrete choice literature on fishing location

decisions. We also consider cases of a partially myopic fisher that considers multiple forward

decisions but is not optimizing the entire trip (e.g., 2 decisions ahead, 3 decisions, and 6

decisions).

Previous empirical studies find evidence that fishers are more likely to choose locations

with high expected rewards, low travel distance and low risk. Our simulation results are

consistent with the previous literature. Sites with high fish stock and low travel distance are

visited. Simulation results also show that technology constraints such as fuel constraint and

hold capacity constraint endogenously determine the trip length. The fuel constraint and the

hold capacity constraint limit the number of fishing sites to go and the amount of fishing effort

applied by constraining the total fuel usage and/or the total fish harvest. These technology
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constraints impose shadow prices that affect the decision of fishing effort and location choice

from the outset of a trip. Comparing the results from the optimal trip decision-making with

the myopic, we demonstrate how the prior research is subject to misspecification, as researchers

have ignored the role of vessel capacity, fuel constraints and route planning in their estimations

of fishers’ location choice. We decompose the profit loss from ignoring route planning and

technology constraint by modeling a partially myopic fisher who considers multiple choices at

a time. The more sites the partially myopic fisher considers in the trip decision making, the

higher the profit realized from better route planning and distribution of fishing effort.

The paper is organized as follows. Section 2 reviews the literature in the short run location

choice in commercial fishery. Section 3 presents the model of the short run decision on location

choice and effort allocation by the dynamic fisher, the myopic fisher, and the partially myopic

fisher. Section 4 describes the Gulf of Mexico demersal longline fishery and parameterization.

Section 5 presents the results. Section 6 concludes.

2 Literature Review

The short-run decision of location choice for commercial fishers at the trip level is a dynamic

spatial problem. The individual fisher’s problem is cast as choosing fishing sites to maximize

the overall trip profits. Spatial patchiness of marine resources with different population levels

and economic characteristics generate discontinuities in the spatial structure(Sanchirico and

Wilen, 1999). Spatial decisions are therefore modelled as discrete choices among a finite set

of fishing sites in commercial fisheries.

The discrete choice random utility model (noted as RUM) was first used in Bockstael and

6



1

Opaluch (1983) to model the medium-run decision2 of fishery choice in New England trawling

fishery. Since then, the RUM has been utilized to model the short-run margin of the fishery

production process, trip-level location choice in single and multispecies fisheries (Eales and

Wilen, 1986; Dupont, 1993; Mistiaen and Strand, 2000; Smith, 2005; Abbott and Wilen, 2011;

Sun et al., 2016), and trip-level fishery and location-choice in multi-species fisheries (Holland

and Sutinen, 2000; Curtis and Hicks, 2000; Curtis and McConnell, 2004). Eales and Wilen

(1986) and Sun et al. (2016) modeled the location choice of the first set, which is a very

short-run decision.

The static RUM is usually formed as the following: fishers, conditional on taking a fishing

trip, make a decision of where to fish to maximize the current period utility in time period t

that is affected by travel costs and expected rewards linearly.

Uijt = βdist×Distijt+βrewards×E[Rewardsijt]+εijt (1)

where i represents the vessel, j is the site and t is the decision point (usually in temporal

dimension). εijt is the random shock. These studies show that fishers tend to visit a site

with a high expected revenue and a short travel distance. Extensions of the static RUM

include variables such as variance of the rewards (Dupont, 1993; Mistiaen and Strand, 2000;

Hutniczak and Münch, 2018), preference heterogeneity (Smith, 2005), state dependence (your

past experience affects future choice) (Holland and Sutinen, 2000; Smith, 2005), evolving

information and information sharing (Curtis and McConnell, 2004; Abbott and Wilen, 2011;

Dépalle et al., 2021), spatial correlation and learning (Marcoul and Weninger, 2008; Hutniczak
2In the fishing production, medium run decisions include between fishing trip decisions such as switching

ports, switching target species, and switching gear.
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and Münch, 2018), and bycatch avoidance (Haynie et al., 2009; Abbott and Wilen, 2011).

Applied studies of location choice spanned a diverse range of fisheries from sedentary

species (Smith, 2002, 2005; Marcoul and Weninger, 2008) to pelagic species (Curtis and Hicks,

2000; Mistiaen and Strand, 2000; Curtis and McConnell, 2004). For sedentary species, most

vessels fish single-day trips choosing 1-2 fishing grounds (Eales and Wilen, 1986; Smith, 2005;

Marcoul and Weninger, 2008). For finfish species like groundfishes or tunas, vessels make

multi-day trips (Curtis and Hicks, 2000; Curtis and McConnell, 2004; Hicks and Schnier,

2008; Abbott and Wilen, 2011; Hutniczak and Münch, 2018). This adds a layer of dynamic

complexity to the problem. On a multiday cruise, spatial location choices may be made in a

dynamic context instead of myopic day-to-day strategies. A set of papers incorporate skipper’s

forward-looking behavior in the RUM by adding expected future payoffs to the objective

function (Curtis and Hicks, 2000; Curtis and McConnell, 2004; Hicks et al., 2004; Hicks and

Schnier, 2008). The dynamic random utility model (DRUM), a static RUM entrenched in

dynamic optimization developed and used in Hicks and Schnier (2006, 2008), is a middle

ground approach3 to include dynamic choices and remain computationally tractable.

Even in the pseudo-dynamic models, trip length for multi-day trips is usually assumed

exogenous. For example, Curtis and Hicks (2000); Curtis and McConnell (2004); Hicks and

Schnier (2006, 2008); Hutniczak and Münch (2018) assume the length of the trip is known

before leaving port. Trip duration, as an input of the short-run fishery production process, is

endogenously determined during a trip. (Curtis and Hicks, 2000) and (Curtis and McConnell,

2004) suggest that catch deterioration affects location choice through the impact on produc-
3It is a middle-ground approach as stated in (Hicks and Schnier, 2006) because the state space is determin-

istic, rather than stochastic and path dependent, to avoid the curse of dimentionality. The individual fisher
formulates the expectation about the site conditions at the port and uses the deterministic information to
calculate the value function for future periods. There is no information processing and expectation updating
by vessels during the cruise.

8



1

tion horizon. A recent paper by Abe and Anderson (2020) models the dynamic choices of

endogenous trip length due to freshness deterioration. However, the paper doesn’t include

the spatial margin of the trip level production process.

Fuel and hold capacity are mainly discussed in the literature of capacity measures and

capacity utilization4. Little attention has been paid to the role of fuel capacity and hold

capacity in location and trip duration choice. One reason could be that few trips land a full

load (Smith and Hanna, 1990; Abe and Anderson, 2020) or appear to use up all the fuel

on a given trip. Although the ex-post constraints may not be binding, these constraints are

likely to impact the ex-ante decision-making given that there is a risk violating them on any

given trip5. Running out of fuel at sea also could have devastating consequences for the vessel

capital and crew.

Up to now, the literature on trip-level location choice addresses portions of the full dy-

namic spatial problem faced by commercial fishers on a trip most likely due to model and

computation complexity. As far as we are aware, no paper in the fishery economics literature

on location choice captures the interlinked decision on location choice, fishing effort, travel

route, and trip length with the technology constraints of fuel and hold capacity6.
4Fishing capacity measures the capability of a vessel or fleet of vessels to catch fish (Smith and Hanna, 1990;

Gréboval, 2003). Fuel consumption is an input measure to represent the effective effort applied to existing
capital stock, usually not captured in the capacity analysis (Kirkley et al., 2002; Dupont et al., 2002; Felthoven
and Morrison Paul, 2004). Hold capacity is the most widely used output-based physical measure of fishing
capacity (Gréboval, 1999).

5An analogy could be range anxiety which is a well-known phenomena with the use of electrical vehicles
(EV) (Li et al., 2017). EV owners worry about running out of electricity before reaching the destination given
the limited driving range, even though many do not run out of a charge on any given trip.

6Haynie and Layton (2010) jointly estimated the expected catch value and location choice. However, the
continuous catch is treated as a random variable instead of a choice variable after the location is chosen. There
is no assumption about the fishers effort allocation rule.
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3 Methodology

To address the gap in the literature, we develop a structural model for the dynamic within-trip

decision process of location choice, effort allocation and the path in a multi-day trip, while

the trip duration is endogenously determined by fuel or hold capacity constraints. Although

uncertainty is a key part of the problem, the paper starts with a deterministic fish stock setting

to disentangle the complex spatial dynamic problem. In ongoing work, we are incorporating

uncertainty and passive learning over trip on the stock levels in each site.

The spatial dynamic fishing production problem of an individual vessel can be modeled as

a single vehicle routing problem with profits (VRPP) or a traveling salesman problem with

profits (TSPs with profits) in the operation research literature. In the routing problem with

profits, all nodes of interest have a certain profit and not all of them need to be visited,

but a selection has to be made. According to the way the two objectives (profits and travel

costs) are addressed, the single vehicle routing problem with profits could be categorized into

three types of problems. In the profitable tour problem (PTP) (Dell’Amico et al., 1995),

the objective function is to visit a subset of customers that maximizes the total collected

profit minus travel cost. In the prize-collecting traveling salesman problem (PCTSP) (Balas,

1989), the objective is to minimize the total travel cost to collect a minimum amount of profit

by visiting a subset of the customers. In the orienteering problem (OP) (Tsiligirides, 1984;

Golden et al., 1987), the objective is to find a route that maximizes the total collected profit

from the subset of nodes while respecting the given cost constraint.

The OP setting fits the spatial dynamic fishing production problem of an individual vessel

the best. The OP actually integrates the difficulties of two complex combinatorial optimiza-
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tion problems: the knapsack problem (KP)7 and the regular traveling salesman problem

(TSP)8/the vehicle routing problem (VRP)9 (Vansteenwegen and Gunawan, 2019).

The OP can be formulated as an integer programming model with the following binary

decision variables: yi = 1 if node i is visited, and xij = 1 if a visit to node i is followed by a visit

to node j. We modify the OP for individual fisher’s location choice problem by introducing a

continuous decision variable, fishing effort, and rewriting the profit at each node as a function

of fishing effort using a generalized Schaefer harvest function (Zhang and Smith, 2011). With

the binary and continuous decision variables, this discrete-continuous problem is formulated

as a mixed integer programming (MIP) problem. In the formulation of the routing problem,

time is implicit and endogenous to the explicit spatial choice.

profiti = p×harvesti− cost(harvesti)

= p× qEffortγi Stock
β
i − cost(Efforti)

(2)

3.1 Model for the location choice problem

3.1.1 Assumptions

The model features a vessel with a finite amount of fishing sites and a single port. The vessel

starts and ends at the port (Node 1) in a fishing trip. Each fishing site i ∈ N is associated

with a non-negative fish stock, Stocki. Fish stock is 0 at the port. In the deterministic case,

the fisher has perfect information about the fish stock at each fishing site.
7In the KP, each item has a profit and requires some volume. The goal is to determine the combination of

items that maximizes the total profit and that fits in a given volume. In the fishing production context, fish
catch requires storage space.

8The objective of the TSP is to find the shortest single route visitng all customers.
9The objective of the VRP with a single vehicle is to minimize the total distance required to visit a fixed

set of customers starting from a depot.
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Since the distance from fishing site i to j is assumed to equal the distance from fishing

j to i (dij = dji), we can model the problem as an undirected graph G = (N,E), consisting

of the set N of nodes and the set E of edges. In the undirected graph G, all the edges (i, j)

are bidirectional, xij = xji. A brief explanation of the terms used in operation research is in

Table 1.

Table 1: Terms used in fishery operation research

Node A fishing site or a port. Nodes in the problem are numbered 1 to N
Edge A connection between any two nodes representing movement
Tour A fishing trip. It involves departure from a port, a sequence of fishing site visits and the return to the port.

The vessel is assumed to maximize profit. The profits from fishing at each site are aggre-

gated into a trip-level return and each site can be visited at most once.

3.1.2 Formulation

The goal of the individual vessel is to find a route that visits a subset of N fishing sites and

to choose the fishing effort at each site to maximize the total profit subject to technology

constraints imposed by fuel and hold capacity constraints. The problem of the individual
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vessel is

max
xij ,yi,Ai

∑
i∈N (piqAγi Stockiyi−afcfuelAi)−

∑
(i,j)∈E dijxijbfcfuel

s.t. ∑
(i,j)∈E dijxijbf + ∑

i∈N Aiaf ≤ Fmax Fuel constraint

∑
i∈N qA

γ
i Stockiyi ≤ Cmax Hold capacity constraint

∑N
j=2x1j = 2y1 Entering and Leaving 1

∑N−1
i=1 xik = 2yk,xik = xki if i > k,i 6= k,k = 2, · · · , |N |10 Entering and Leaving k

y1 = 1 Visit Node 1

∑
i∈S

∑
j∈S xij ≤

∑
i∈S\{k} yi,∀S ⊂N \{1}, |S| ≥ 3,k ∈ S Subtour elimination

xij ,yi ∈ {0,1}
(3)

Table 2 summarizes the model variables and parameters that will appear repeatedly in

the paper.

Table 2: Variable and parameter definitions

Decision Variables Label Range
xij = 1 if the edge ij is visited, 0 otherwise. xij = xji in the undirected case. (0,1)
yi = 1 if the node i is visited, 0 otherwise (0,1)
Ai fishing effort (hook number × fishing hour) at node i continuous
Parameters description Value
N the set of nodes in the network (the port and fishing sites) 15
E the set of edges in the network
S the set of subtours
k an index representing the node
dij travel distance in nm between node i and j. dij = dji in the undirected case
Stocki fish stock at node i
pi price of harvest at node i 300
q catchability coefficient 9.4×10−6†

f fuel usage, gallon per hour 5
cfuel $ per gallon, unit cost of fuel usage 2
a fishing effort fuel consumption coefficient 0.002
speed traveling speed, knots (nautical mile per hour) 5
b traveling fuel consumption coefficient, 1/speed, 0.2
Fmax fuel capacity
Cmax hold capacity
γ output elasticity of fishing effort 0.7
β output elasticity of fish stock 1

• †: See derivation in Appendix Section D

10Edge xik = xki in the undirected graph.
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Objective function The vessel chooses the fishing site yi, path xij and fishing effort Ai at

each fishing site to maximize the total trip profit. Fishing profit equals to harvest revenue

minus fishing cost and traveling cost.

max
xij ,yi,Ai

Profit = ∑
i∈N (piharvestiyi−afcfuelAi)−

∑
(i,j)∈E dijxijbfcfuel (4)

The price per node is allowed to be different across fishing sites and we assume that the

harvest function is a Cobb-Douglas production function.

harvesti = qStockβi A
γ
i (5)

where q is catchability coefficient, defined as the fraction of the population fished by an effort

unit (Gulland, 1983). Zhang and Smith (2011) estimate the output elasticity of fishing effort

γ to be less than 1 (diminishing harvests in fishing effort) regardless of whether the catch

stock elasticity β is restricted to 1 for all gears in the reef-fish fishery in the Gulf of Mexico11.

The Schaefer harvest function is a special case when γ = 1,β = 1 (Schaefer, 1954) .

Constraints The individual fisher faces the following constraints.

Fuel constraint limits the total fuel usage of fishing (∑i∈N Aiaf) and traveling between

sites (∑(i,j)∈E dijxijbf) given the fuel capacity of the vessel Fmax. :

∑
(i,j)∈E

dijxijbf +
∑
i∈N

Aiaf ≤ Fmax. (6)

11The estimated catch effort elasticity for bottom longline is 0.3325 with standard error 0.0093 in Zhang and
Smith (2011). However, the effort in Zhang and Smith (2011) is defined as number of crew times trip days
while the effort in this paper is defined as number of hooks times fishing hour (longline set, soak and retrieve
time).
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The total trip harvest must be less than or eqaul to the available hold capacity Cmax:

∑
i∈N

qStockiA
γ
i yi ≤ Cmax. (7)

The logical constraints ensure the vessel starts from and ends at the port (Node 1).

N∑
k=2

x1k = 2y1. (8)

y1 = 1. (9)

The logical constraint ensures connectivity at node k in terms of entering and exiting the

location. The vessel arrives at Node k via edge (i,k) and leaves Node k via edge (k,j). Edge

xkj = xjk because edges are bidirectional.

N−1∑
i=1

xik = 2yk,xik = xki if i > k,i 6= k,k = 2, · · · , |N |. (10)

Subtour elimination constraints eliminate possible subtours12. For every subset of nodes

(port excluded), the number of visited edges inside the subset (xij-values equal to 1) should

be strictly smaller than the number of nodes in the subset. Dantzig et al. (1954) proposed

the following subtour elimination constraints for the travelling salesman problem (Equation

11). It is the strongest known linear relaxation but the exponential number of constraints

makes the implementation impractical (Palomo-Martínez et al., 2017). The set of subtours is
12Subtours: The optimal solution found doesn’t give one continuous path through all the points, but instead

has several disconnected loops (subtours). Appendix Section B includes an example of TSP solution with
subtours.
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|S|= ∑
i∈S yi.

∑
i,j∈S xij ≤ |S|−1;∀S ⊂N \{1},S 6= ∅. (11)

Since not all nodes are visited in the solution of the orienteering problem, Feillet et al.

(2005) defined a stronger formulation (see Equation 12) (Palomo-Martínez et al., 2017). The

bidirection setting of xij naturally deleted subtours with only two nodes13 .

∑
i,j∈S:i 6=j xij ≤

∑
i∈S\{k} yi;∀S ⊂N \{1}, |S| ≥ 3,k ∈ S. (12)

The edge choice variable xij and node choice variable yi are both binary variables: xij ∈

(0,1) and yi ∈ (0,1). Fishing effort (fishing hour × hook number), Ai, is continuous.

Solution We solve for an open-loop solution that does not account for the strategic inter-

action between players through the evolution of state variables over time and the associated

control adjustments (aka feedback rule). The player chooses the plan for the whole trip at

the beginning and commits to it (Cellini and Lambertini, 2004).

3.2 1-site Ahead Myopic Fisher

3.2.1 Assumptions and Setup

Period-by-period static random utility model for location decisions depicts a myopic fisher.

Using the similar formulation of the dynamic fisher, the individual fisher does a rolling max-

imization by choosing only one site at each decision point.

Because time is implicit and endogenous to spatial location in this framework, the decision
13A subtour of two nodes i and j requires both xij = 1 and xji = 1. But the bidirectional edge xij = 1

represents either the edge from i to j is taken or the edge of j to i is taken but not both. Therefore there are
no subtours of two nodes with the bidirectional edge xij .
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point is in the spatial dimension. At the initial decision point one, the fisher is at the port

(Node 1) and chooses to go to site k. Then the fisher is at site k, the decision point two where

the second site is chosen. The time between two decision points (chosen locations) equals

to the fishing time at the previous decision point (location) plus travelling time from the

previous decision point (location) to the current decision point (location). It is endogenously

determined by the location choice and effort allocation. The temporal dimension can be

constructed using the model solution of location choice, effort allocation and path.

If the available storage is used up, the fisher has to return to the port. Moreover, if the

fuel cannot support the trip from the current site to the next site and then back to the port,

the fisher will return to the port immediately14. Otherwise, the vessel will be adrift at sea

after fishing at the next site due to insufficient fuel.

In this setting, we modify the fuel constraint (Equation 13), because the edge is directional.

The distance from site i to site j to the port 1 is not equal to the distance from site j to site

i to the port (Node 1) (dij +dj1 6= dji+di1 because di1 6= dj1 given i 6= j). The bidirectional

edge xij doesn’t capture the difference between travel distance back to the port of edge (i, j)

and that of edge (j, i). The myopic 1-step ahead fisher problem is a directed graph with

directional edges. ∑
(i,j)∈E

(dij +dj,1)xijbf +
∑

(i)∈N
aAif ≤ F tmax (13)

14Going back to the port results in negative profit because there is no fish stock at the port. Negative profit
is allowed in the rolling maximization to make this happen.
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3.2.2 Formulation

The myopic problem at each decision point t can be formulated as

max
xij ,yi,Ai

∑
i∈N (piqAγi Stockiyi−afcfuelAi)−

∑
(i,j)∈E dijxijfcfuel

s.t. ∑
(i,j)∈E(dij +dj,1)xijbf + ∑

(i)∈N Aiaf ≤ F tmax Fuel constraints

∑
i∈N qStockiA

γ
i yi ≤ Ctmax Hold capacity constraints

∑N
i xik + ∑N

i xki = yk, i 6= k Entering and Leaving k

yk = 1 Starting from Node k

∑N
i xki = 1, i 6= k Starting from Node k

∑
i,j xij = 1 One edge is visited

∑N
i=1 yi = 2 Two nodes are visited

Ak = 0,k ∈ visited nodes No harvest at previously visited nodes

yk = 0,k ∈ visited nodes\ starting node Visited nodes in previous trip exclusion

xij ,yi ∈ {0,1}

(14)

F tmax (Ctmax) is the available fuel capacity (hold capacity) at decision point t, equal to the

available fuel capacity (hold capacity) subtracted by realized fuel consumption (harvest) at

the previous decision point t−1.

F tmax = F t−1
max−dijxt−1

ij bf −At−1
i af

Ctmax = Ct−1
max− qStocki(At−1

i )γyt−1
i

(15)
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3.3 M-site Ahead Partially Myopic Fisher

3.3.1 Assumption and Setup

Instead of site-by-site choice, the m-site ahead partially myopic fisher chooses a sequence of up

to m sites before returning to the port at every decision point. The fisher follows the sequence

to visit the chosen fishing sites. 1<m≤N−1, N denotes the total number of sites including

the port. At the first chosen site, the fisher re-optimizes the trip by choosing another sequence

of up to m sites before returning to the port. The whole choice set includes no more than

m+ 1 sites because at some decision point t, the remaining fuel constraint and/or capacity

may not be sufficient to support travelling and fishing to another m sites and returning to

the port. This process repeats until the fisher arrives at the port.

Specifically, the modeling for the m-site ahead partially myopic fisher is:

1. At the port (the first decision point), the myopic fisher chooses the first set of m+1≤N

sites (n1
1, n1

2, · · · , n1
m, port ) before going back to the port, subject to fuel constraint

F 1
max = Fmax and capacity constraint C1

max =Cmax. The superscript 1 of choice n1
m and

technology constraints F 1
max and C1

max denotes the choice is made at the first decision

point. The subscript m of choice n1
m denotes it is the mth chosen location in the choice

set.

2. After fishing at the chosen site n1
1 (the second decision point), the fisher makes the second

choice set of m sites before returning to the port (n2
1, n2

2, · · · , n2
m, port), subject to fuel

constraint F 2
max and hold capacity constraint C2

max. F 2
max equals to fuel constraint at

the first decision point F 1
max minus the fuel usage from the port (the first decision point)

to site n1
1 (the second decision point) and fishing fuel usage at site n1

1. C2
max equals to
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hold capacity constraint at the first decision point C1
max minus the fish catch at the

second decision point site n1
1.

3. After fishing at Site nt1 (the t+1th decision point), the fisher chooses the t+1th sequence

of sites (nt+1
1 , nt+1

2 , · · · , nt+1
m = port) subject to constraints of fuel F t+1

max and hold capacity

Ct+1
max.

4. This repeats T times until the fisher chooses the port (nT1 = port) at Site nT−1
1 (the

T th decision point). The travel path of the fisher is (port, n1
1, n2

1, . . . , nt1,. . . ,nT1 =port).

See Appendix Section E for the choice sets, fuel capacity constraints and hold capacity

constraints at each decision point.

3.4 Formulation

At the tth decision point, Site nt−1
1 , the partially myopic fisher chooses a sequence of sites,

travel routes and fishing efforts to maximize the profit. t= 1, . . . ,T . n0
1 = nT1 = 1 denotes the
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port. The m-site ahead partially myopic fisher’s problem is an undirected graph.

max
xij ,yi,Ai

∑
i∈N (piqAγi Stockiyi−afcfuelAi)−

∑
(i,j)∈E dijxijbfcfuel

s.t. ∑
(i,j)∈E dijxijbf + ∑

i∈N Aiaf ≤ F tmax Fuel constraint

∑
i∈N qA

γ
i Stockiyi ≤ Ctmax Hold capacity constraint

∑N
j=2x1j = y1 +1{t= 1}y1

15 Entering and Leaving 1

∑N
j=2xnt−1

1 j = ynt−1
1
, if t≥ 216 Entering and Leaving nt−1

1∑N−1
i=1 xik = 2yk,xik = xki if i > k,i 6= k,k = 2, · · · , |N |17 Entering and Leaving k

y1 = 1 Visit Node 1

ynt−1
1

= 118 Visit Node nt−1
1∑

i∈S
∑
j∈S xij ≤

∑
i∈S\{k} yi,∀S ⊂N \{1}, |S| ≥ 3,k ∈ S Subtour elimination

∑
i∈N yi ≤ m+1+1{t≥ 2}19 Node Visit constraint

xij ,yi ∈ {0,1}
(16)

4 Setting

The model and analysis in the paper are motivated and parameterized to the extent possible

by the Gulf of Mexico grouper-tilefish demersal longline fishery (Figure 3). OFarrell et al.

(2019b) integrated three datasets (Vessel Monitoring System (VMS) data, observer data,
15If the fisher is at the port (the first decision point),

∑N
j=2x1j = 2y1 because the fisher leaves and returns

to the port. If the fisher is at another site other than port,
∑N
j=2x1j = y1 because the fisher has to return to

the port.
16If the fisher is at another site nt−1

1 other than the port (the tth choice set , t≥ 2), this constraint denotes
that fisher departures from Site nt−1

1 .
17Edge xik = xki in the undirected graph.
18When the fisher is at the port,nt−1

1 = 1, this constraint duplicates y1 = 1 and becomes redundant. When
the fisher is at Site nt−1

1 other than the port, the constraint ensures that site is chosen.
19At the port (the first decision point), the fisher chooses m sites and port so in total m+1 sites. However,

at Site nt1 other than the port (the tth decision point, t≥ 2), the fisher chooses m+ 2 sites. The extra 2 sites
include the current site and the port.
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logbook data) to capture the fine spatial behavior of the fleet. The dataset consists of more

than one million hourly GPS positions (VMS pings) from the bottom longline fishery tracking

5508 trips made by 133 vessels from 2007 to 2014. Figure 1 summarizes a subset of the GPS

data for the fishery with 587,204 pins from 106 vessels from 2007 to 2009.

Figure 1: Bottom Longlines and fishing heatmap in Gulf of Mexico, (OFarrell et al., 2019b)

At present, the paper demonstrates the model on a 15-node problem (See Figure 3), where

the port (Node 1) is set at Tampa, FL. The simulated vessel path in Figure 2 forms the basis

for modeling a vessel leaving and returning to the same port.

The fishing ground modeled in the paper is based on the eastern Gulf of Mexico and is

created as a convex hull of the VMS pings classified as fishing using a supervised learning

algorithm trained by the observer data (OFarrell et al., 2019b)20. The fourteen nodes rep-

resenting fourteen fishing sites are randomly generated within the polygon. The inter-site

distances are calculated in nautical miles as the great-circle distance based on the fishing site

coordinates using Haversine formula. The fish stocks are generated randomly to a uniform

distribution U(30,500) ×100 lbs. Fishing effort is fishing hour (longline set, soak and retrieve

time) times the number of hooks. The number of hooks is set to be 1000 to simplify the
20VMS records east to the 87th meridian west are used in this version of the paper. The convex hull is

created using chull function in R.
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Figure 2: Simulated vessel track in Gulf of Mexico, markers represent pings that have been
classified into one of three activities: fishing (red circles), transiting (black dots) or in port
(black diamonds) using a supervised learning algorithm trained using data from trips when
on-board fisheries observers were present. (OFarrell et al., 2019b)

analysis21.

We consider the trips of a dynamic fisher, a myopic fisher, and a partially myopic fisher

in the presence of three sets of technology constraints: no binding technology constraints

(sufficiently large fuel capacity Fmax = 20000 gallons and hold capacity Cmax = 200× 100

lbs), a binding fuel capacity constraint {fuel capacity Fmax = 3000 gallons, hold capacity

Cmax = 200×100 lbs}, and a binding hold capacity constraint { fuel capacity Fmax = 20000

gallons, hold capacity Cmax = 30×100 lbs}22. The problems are formulated as mixed-integer

programming (MIP) problems and solved by the Gurobi solver.

The implicit temporal dimension can be constructed by the fishing and travelling times.
21The observer data includes 8252 longline sets from 314 fishing trips by 83 vessels from 08/08/2006 to

04/24/2014.The hook number ranges from 150 to 3000 with a median of 1000 and a mean of 1019.
22The logbook data includes hold capacity and fuel capacity for 145 vessels. The hold capacity in pounds

ranges from 1000 to 200,000 with mean of 15787 and median 12000. The fuel capacity in gallons ranges from
200 to 6000 with mean of 1319 and median of 1000.
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(a) Map (b) Fish Stock

Figure 3: The port (Node 1) and 14 fishing sites in the Gulf of Mexico

Fishing effort reflects the fishing hours (longline set, soak, and retrieve time) spent at a fishing

site. Travelling time can be calculated from the travel distance of the chosen edge with a given

travel speed. Suppose the traveling speed is 5 knots (nautical mile per hour), traveling fuel

consumption rate is 5 gallon per hour while fishing fuel consumption rate is 10 gallon per

hour23.

5 Results

Generally, we find that the technology constraints affect the short-run decisions over fishing

location, path, and fishing effort by imposing a trip level shadow price. Before reporting the

simulation results that demonstrate those findings, we can analytically show the role that

technology constraints play in determining the effort allocation at each site. Specifically,

the trip level shadow price that holds across fishing sites either affects the marginal revenue

(p−λhold) or the marginal cost (cfuel +λfuel) depending on the constraint that is binding.
23Fuel consumption rate for fishing is assumed to be twice as large as steaming. Accurate information on

fuel consumption rates for steaming and fishing were not available yet. We are exploring ways to improve this
parameterization by developing methods more appropriate for longline fishing in the Gulf of Mexico.
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Equation 18 shows the optimal effort allocation at site i.

∂L
∂Ai

= pqStockiyiγAγ−1
i −afcfuel−λfuelaf −λholdqStockiyiγAγ−1

i

= (p−λhold)qStockiyiγAγ−1
i − (cfuel+λfuel)af

= 0

(17)

⇒A∗i = ((p−λhold)qStockiyiγ
(cfuel+λfuel)af

)
1

1−γ (18)

Regardless of the binding constraint, the shadow price reduces the effort allocation at each

site relative to the case where the constraints are not binding. The latter is representative

of the myopic fisher that acts as if the next fishing operation were the last opportunity for

fishing. Having said that, eventually the constraints will bind even in the myopic case and at

the last decision point where they bind, there is a revealed shadow price. For example, if the

myopic fisher is making their 5th decision of where to go on a trip and how much effort to

exert and they calculate that they can’t go to another site as they will run out fuel, then that

decision’s optimal calculus includes the shadow price attached to the binding fuel constraint.

But for all decisions before their 5th, the constraint did not bind and therefore their decision

calculus was independent of the shadow price.

The presence of the shadow price impacts directly the effort exerted in each patch but

it also changes the fuel used for fishing in each patch and the catch. As such, it influences

the path taken on the trip (and the fuel expended steaming to and from the fishing sites).

As we demonstrate below with numerical analysis, the dynamic fisher makes decision about

the whole trip at the port (open-loop solution), while the myopic fisher makes site-by-site

decisions and does not optimize their route planning.
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5.1 Dynamic fisher vs myopic fisher

Figure 4 shows the location choice,travel path and fishing effort of the dynamic fisher and the

myopic fisher under three sets of technology constraints. Table 3 highlights the differences in

key variables across the cases including the trip profit, fuel use, harvest, shadow price, and

endogenous trip length.

Variable Unconstrained Fuel Hold
Fmax = 20,000,Cmax = 200 Fmax = 3,000,Cmax = 200 Fmax = 20,000,Cmax = 30

Fisher Type Dynamic Myopic Dynamic Myopic Dynamic Myopic
Profit 0.94πdynamic 0.44πdynamic 0.61πdynamic
Fuel Usage 17518.03 17916.41 3000 3000 2138.7 3064
Harvest 160.88 160.88 40.74 29.16 30 30
Shadow price - λfuel = 1.6031 λhold = 142.3355
Travel% 6.9% 10.8% 34.5% 10% 36.9% 9.8%
Fishing% 93.1% 89.2% 65.5% 90% 63.1% 90.2%
Trip Length (day) 75 79 15 13 11 13

1. Travel% denotes percentage of travel time of the total trip length. Same for Fishing%.

Table 3: Fuel and Hold Usage, Binding Constraints, Shadow Price, Travel Route and Time

5.1.1 Nonbinding constraints

With sufficient fuel and hold capacity24, the dynamic fisher and myopic fisher visit and harvest

at all fishing sites and exert fishing effort at each site until the marginal profit equals 0

( ∂π
∂efforti = 0). While the two are identical in terms of sites visited, harvest, and effort exerted,

the trip profits differ because the dynamic fisher optimizes their route while the myopic does

not25. Figure 4a and 4b show the route planning by the dynamic fisher while the myopic

fisher only considers the next best choice ( mainly following the order of fish stock).
24We set fuel capacity Fmax = 20,000 gallons and hold capacity Cmax = 200 × 100 lbs so that neither

constraints bind (Table 3).
25The bidirectional route for the dynamic fisher:1-5-8-4-11-12-9-15-14-6-10-7-2-13-1. The directional route

for the myopic fisher:1-13-5-7-10-8-9-12-4-11-15-6-2-14-3-1.
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(a) Unconstrained, Dynamic (b) Unconstrained, Myopic (c) Effort

(d) Fuel, Dynamic, (e) Fuel, Myopic (f) Effort

(g) Hold, Dynamic (h) Hold, Myopic (i) Effort

Figure 4: Travel Path, Dynamic Fisher vs Myopic Fisher
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5.1.2 Binding fuel constraint

While the unconstrained case is valuable for highlighting the role and value of route planning,

vessels are constrained in their fuel and hold capacity, especially when considering the large

choice set of fishing sites. To investigate the role of these technological constraints, we reduce

the fuel capacity to ensure that it is binding. Specifically, when we set the fuel constraint

to 3,000 gallons with the same hold capacity constraint of 200× 100 lbs, we find that both

fishers face a binding fuel constraint though it only appears in the last decision of the myopic

fishers trip calculus26.

In Figure 4d, we see that the dynamic fisher goes to the same location choices, as the

unconstrained case, but reduces the effort at every visited site. In the presence of the con-

straint and with diminishing marginal harvest to effort, we find that it is optimal to spread

fishing effort across fishing sites instead of concentrating effort on one or two sites with the

largest fish stock. The effort is reallocated such that marginal profit of effort equals to the

the shadow cost of fuel times the fuel consumption per unit of effort ( ∂π
∂efforti = afλfuel).

The myopic fisher on the other hand concentrates effort at Site 13 with the highest fish

stock (Figure 4e). When the fisher makes the choice to visit Site 13, the fuel constraint is

not binding, and as such the fishing effort at Site 13 is the unconstrained optimal effort.

The fuel constraint, however, is binding and hence reduces the effort spent at Site 5, the

last fishing site before the port. Since fishing and travelling consume fuel, we find that the

relative shadow price of fuel for the myopic at site 5 is greater than the optimal shadow price

( λmyopicfuel,5 = 2.1230> λdynamicfuel = 1.6031). This results in the effort at Site 5 being smaller than
26The bidirectional route for the dynamic fisher:1-5-8-4-11-12-9-15-14-6-10-7-2-13-1. The directional route

for the myopic fisher:1-13-5-1.
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the dynamic optimal level. The inefficient use of fuel27 and concentrated levels of effort across

fishing sites, limits the number of visited sites and leads to a much lower profit for the myopic

fisher (πmyopic ≈ 0.44πdynamic).

5.1.3 Binding hold constraint

We now consider the case of reducing the hold capacity from 200× 100 lbs to 30× 100 lbs

while using the unconstrained amount of fuel. Both fishers have a binding hold constraint but

just as in the case with the binding fuel constraint, the dynamic fisher considers the constraint

when deciding the trip and myopic only in their final decision point28.

In Figure 4g, we see that the dynamic fisher no longer visits the relatively distant Sites

3, 4, 11 and 12 (a smaller circle), and reduces the effort at every visited site. The effort is

reallocated such that marginal profit of harvest equals to the shadow cost of hold capacity

( ∂π
∂harvesti = λhold). On the contrary, the myopic fisher concentrates effort at Site 13 with the

highest fish stock (Figure 4h). The hold capacity constraint for the myopic fisher is binding

at Site 5, the last decision point before returning to the port (λmyopichold,5 = 154.47> λdynamichold =

142.33). Given the relative size of the shadow prices, we find that the effort at Site 5 is smaller

in the myopic than the dynamic optimal level. The myopic fisher again has a much lower trip

level profit (πmyopic ≈ 0.61πdynamic), even though both fishers have the same harvest. We also

find that the endogenous trip length is longer and that most of their fuel is spent fishing (they

fish longer and harder at each patch before moving on as they are fishing until the marginal

profit goes to zero).
27Because the myopic fisher visits the fishing sites following the order of fish stock, the first few visited fishing

sites have the largest fish stock and therefore requires a lot of fishing effort/fuel to drive down the marginal
profit of effort to zero.

28The bidirectional route for the dynamic fisher:1-5-8-9-15-14-6-10-7-2-13-1. The directional route for the
myopic fisher:1-13-5-1.
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5.2 M-site ahead partially myopic fisher

From the previous results, the dynamic fisher and the myopic (1-site ahead) fisher behave

differently in route planning and incorporating shadow price of the technology constraints

into fishing effort. In the unconstrained case, the myopic fisher makes less profit because of

no route planning. In the fuel constrained case and hold constrained case, no route planning

and ignoring the technology constraint before the last decision point lead to the smaller profit

for the myopic fisher. This section decomposes the loss from route planing and the loss from

ignoring the technology constraint shadow price in the fuel constrained case (Fmax = 3000

gallons, Cmax = 200×100 lbs.).

The m-site ahead fisher is more forward looking with largerm, therefore the degree of route

planning increases with m. To separate the impact of route planning from that of technology

constraint shadow price, we consider an m-site ahead fisher who knows and incorporates the

shadow price of the binding technology constraint. From Equation 18, the shadow price of

fuel acts as extra fuel cost that affects the fishing effort at each fishing site when the fuel

constraint is binding. Then the m-site ahead partially myopic fisher knowing λfuel faces the

cost of cfuel+λfuel in the decision-making process. Figure 5 shows the location choice, travel

path and fishing effort of the m-site ahead fisher and the m-site ahead fisher knowing λfuel.

Table 4 summarizes the deviation of profit from the dynamic optimal profit, total catch, travel

and fishing time.

For the myopic fisher who makes period-by-period/site-by-site decision, πmyopic = 0.44πdynamic.

With the shadow price of fuel embedded in the decision making, the profit almost doubled (

πmyopic,λfuel = 0.86πdynamic). The profit increases largely because the myopic fisher chooses
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the dynamic optimal level of effort, knowing the shadow price of fuel. The myopic fisher, how-

ever, visits fewer sites than the dynamic fisher because of the lack of route planning (Figure

5b). When m increases from 1 to 2, 3 and 6, the profit increases from better route planning

that leads to less fuel wasted allowing visiting and fishing at more sites. However, the fuel is

not used up with constrained route planning. We find that the magnitude of profit increase

from route planning is lower compared to the magnitude of profit increase from embedding the

shadow price. Whether this holds in general is unclear and is something we plan to explore

with further sensitivity analysis. For example, we are currently assuming that the travel fuel

consumption rate is half of the fishing fuel consumption rate and as such, improving travel

efficiency may not increase much profit.

In general, profit increases with increasing m due to both better route planning and

accounting for the shadow price of the technology constraints. That is, greater forward-looking

behavior results in spreading effort across fishing sites by considering the binding technology

constraints. Although the shadow price of fuel is not equal across all visited fishing sites,

the difference among the shadow price of fuel decreases with m29. From the third column of

graphs in Figure 5, we can see that fishing efforts (red column by the m-site ahead partially

myopic fisher) are more concentrated at early visited sites with smaller m (m = 1,2 Figure

5c and 5f). Fishing efforts between the dynamic and partially myopic fisher are more equal

across the fishing sites with larger m (m= 3,6 Figure 5i and 5l).

29Here are the revealed shadow price for partially myopic fishers.
2-site ahead: λfuel,5 = 0.3607, λfuel,8 = 0.7460, λfuel,7 = 1.3513, λfuel,i = 1.6359, i= 2,13.
3-site ahead: λfuel,8 = 0.5804, λfuel,5 = 0.8955, λfuel,10 = 1.2654, λfuel,i = 1.4262, i= 7,2,13.
6-site ahead: λfuel,5 = 1.0821, λfuel,8 = 1.1579, λfuel,15 = 1.2996, λfuel,i = 1.3735, i= 14,6,10,7,2,13.
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(a) Myopic 1 Site (b) λfuel embedded (c) Effort

(d) Partially Myopic 2-site (e) λfuel embedded (f) Efforts

(g) Partially Myopic 3-site (h) λfuel embedded (i) Efforts

(j) Partially Myopic 6-site (k) λfuel embedded (l) Efforts

Figure 5: M-site ahead partially myopic fisher, binding fuel, Fmax = 3000, Cmax = 200
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Variable Dynamic 1-site ahead 2-site ahead 3-site ahead 6-site ahead
Myopic w/λfuel Partially Myopic w/λfuel Partially Myopic w/λfuel Partially Myopic w/λfuel

Profit1 6221.2 0.44 0.86 0.78 0.87 0.88 0.87 0.95 0.97
Fuel Usage 3000 3000 2994.5 3000 2771.43 3000 2887.08 3000 2914.54
Harvest 40.74 29.16 37.75 36.08 36.61 38.32 37.30 39.73 39.6
λfuel 1.6031 1.6031 1.6031 1.6031 1.6031
Travel%2 34.5% 10% 41.9% 17.2% 37.4% 21.2% 39.6% 26.3% 34.5%
Fishing% 65.5% 90% 58.1% 82.8% 62.6% 78.8% 60.4% 73.7% 65.5%
Trip Length (day) 15 13 16 13.7 14.2 14 15 14.4 14.7
# Sites 14 2 12 5 11 6 12 9 13

1. Only the profit of the dynamic fisher is listed in the table. For the myopic and partially myopic fishers, the percentage of the dynamic profit π
πdynamic

is listed.
2. Travel% denotes percentage of travel time of the total trip length. Same for Fishing%.

Table 4: M-site ahead partially myopic fisher, binding fuel, Fmax = 3000, Cmax = 200

6 Conclusions

Fishing production function is uniquely shaped by space. Regulations influence where fisher-

men can go and how much they will fish. This paper constructs a spatial dynamic model of

an individual fisher’s decision on location choices, effort allocation, and a multi-day trip path

with endogenous trip length. This structural behavioral model of ex-ante short run production

decision-making is useful to fishery management and lays the foundation of a comprehensive

model of the fishing production process. The model can be used to predict fishers’ responses

to policies like area closure and access economic impacts for policy design or evaluation.

The individual fisher maximizes profit by choosing locations with high fish stock and low

travel distance. Technology constraints such as fuel and hold capacity impose shadow prices

affecting, from the outset of the trip, the interconnected decision on location choice, effort

allocation, and travel path.

An implication of our findings is that in the traditional random utility model of fishing

location the coefficient of expected rewards is overestimated if the technology constraints are

omitted. Route planning is also missing in the static RUM models. Considering one location

choice at a time, the myopic fisher will not know all the chosen locations ahead and hence fail
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to find the shortest path. This will inversely restrict the fishing effort at each fishing site and

the number of fishing sites that the fisher can visit. We conclude that the static RUM models

are structurally misspecified but leave for future research an investigation into the empirical

ramification of the incorrect specification.

The current version of the paper accounts only for the deterministic case in which the fisher

has perfect information on the fish stock at each fishing site. Under a stochastic setting, the

individual fisher cannot observe the fish stock and has beliefs on the mean and variance of

the stock at each site. Under uncertainty, the vessel hold capacity constraint also becomes a

probabilistic constraint. Decision making with uncertainty also requires cognitive operations,

including information acquisition and information processing. In future work, we plan to

incorporate these features of fishery production into the structural model of trip level decision-

making.
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A Fishing Production Process

Figure 6: The Fishing Production Process (Reimer, 2012)

B Subtours in the Traveling Salesman Problem
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(a) Solution with subtours (b) Solution with subtours eliminated

Figure 7: Example of subtours from Traveling Salesman Problem: Problem-Based MathWorks
(2021)

C Optimal Unconstrained and Constrained Fishing Effort

The Lagrange function of the dynamic fisher optimization problem (Problem 16) is

L(xij ,yi,Ai,λ) = ∑
i∈N (pqAγi Stockiyi−afcfuelAi)−

∑
(i,j)∈E dijxijbfcfuel

−λfuel(
∑

(i,j)∈E dijxijbf + ∑
(i)∈N Aiaf −Fmax)

−λhold(
∑
i∈N qA

γ
i Stockiyi−Cmax)

(19)

The first order condition of fishing effort at each site is

∂L
∂Ai

= pqStockiyiγAγ−1
i −afcfuel−λfuelaf −λholdqStockiyiγAγ−1

i

= (p−λhold)qStockiyiγAγ−1
i − (cfuel+λfuel)af

⇒A∗i = ( (p−λhold)qStockiyiγ
(cfuel+λfuel)af )

1
1−γ

(20)

1. If neither of the fuel and hold constraint binds, λfuel = 0,λhold = 0. A∗i = (pqStockiyiγcfuelaf
)

1
1−γ

2. If the fuel constraint binds while hold constraint doesn’t. λfuel > 0,λhold = 0. From the
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FOC, we can derive A∗i (λfuel), the optimal fishing effort as a function of λfuel.

A∗i = ( (p−λhold)qStockiyiγ
(cfuel+λfuel)af )

1
1−γ

= ( pqStockiyiγ
(cfuel+λfuel)af )

1
1−γ

(21)

Use the binding fuel constraint, we can solve λfuel and therefore A∗i .

∑
(i,j)∈E dijxijbf + ∑

(i)∈N Aiaf = Fmax

⇒
∑

(i,j)∈E dijxijbf + ∑
(i)∈N ( pqStockiyiγ

(cfuel+λfuel)af )
1

1−γ af = Fmax

⇒ λfuel

⇒A∗i = ( pqStockiyiγ
(cfuel+λfuel)af )

1
1−γ using derived λfuel

(22)

3. If the fuel constraint doesn’t bind while the hold constraint binds, λfuel = 0,λhold > 0.

Similarly, we can derive A∗i (λhold) from the FOC, the optimal fishing effort as a function

of λhold.

A∗i = ( (p−λhold)qStockiyiγ
(cfuel+λfuel)af )

1
1−γ

= ( (p−λhold)qStockiyiγ
cfuelaf

)
1

1−γ

(23)

Using the binding hold constraint, we can solve λhold and therefore A∗i .

∑
i∈N qA

γ
i Stockiyi = Cmax

⇒
∑
i∈N q(

(p−λhold)qStockiyiγ
cfuelaf

)
γ

1−γ Stockiyi = Cmax

⇒ λhold

⇒A∗i = ( (p−λhold)qStockiyiγ
cfuelaf

)
1

1−γ using derived λhold

(24)
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D Derivation of Catchability Coefficient q

The catchability coefficient q is chosen so that the harvest from the unconstrained optimal

effort at each site is interior q(A∗i )γStockiyi < Stocki. With no constraint on fuel and hold,

λfuel = λhold = 0,

A∗i = ( (p−λhold)qStockiyiγ
(cfuel+λfuel)af )

1
1−γ

= (pqStockiyiγcfuelaf
)

1
1−γ

(25)

The optimal harvest at each site should not exceed the available stock.

q(A∗i )γStockiyi < Stocki

q(A∗i )γyi < 1

qyi(pqStockiyiγcfuelaf
)

γ
1−γ < 1

q
1

1−γ y
1

1−γ
i (pStockiγcfuelaf

)
γ

1−γ < 1

q
1

1−γ y
1

1−γ
i < (pStockiγcfuelaf

)
−γ

1−γ

qyi < ( cfuelaf
pStockiγ )γ

(26)

Given parameter values of Stocki, a,p,cfuel, q is chosen so that works for all site, qyi =

1
2min[( cfuelaf

pStockiγ )γ ].

E Timing of m-site ahead partially myopic fisher
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Decision point t Current Site Choice set with order Fuel Constraint Capacity Constraint
t=1 n0

1 = 1, port n1
1,n

1
2, · · · ,n1

m, port F 1
max = Fmax C1

max = Cmax
t=2 n1

1 n2
1,n

2
2, · · · ,n2

m, port F 2
max = F 1

max−d1n1
1
bf −An1

1
af C2

max = C1
max− qStockn1

1
Aγ
n1

1
t=3 n2

1 n3
1,n

3
2, · · · ,n3

m, port F 3
max = F 2

max−dn1
1n

2
1
bf −An2

1
af C3

max = C2
max− qStockn2

1
Aγ
n2

1

t+1 nt1 nt+1
1 ,nt+1

2 , · · · ,nt+1
m = port F t+1

max = F tmax−dnt−1
1 nt1

bf −Ant1af Ct+1
max = Ctmax− qStocknt1A

γ
nt1

t=T nT−1
1 nT1 = port F Tmax = F T−1

max −dnT−2
1 nT−1

1
bf −AnT−1

1
af CTmax = CT−1

max − qStocknT−1
1

Aγ
nT−1

1

Table 5: Timing of m-site ahead partially myopic fisher
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